skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tô, Khá-Î"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A particle raft floating on an expanding liquid substrate provides a macroscopic analog for studying material failure. The time scales in this system allow both particle-relaxation dynamics and rift formation to be resolved. In our experiments, a raft, an aggregate of particles, is stretched uniaxially by the expansion of the air–liquid interface on which it floats. Its failure morphology changes continuously with pulling velocity. This can be understood as a competition between two velocity scales: the speed of re-aggregation, in which particles relax towards a low-energy configuration determined by viscous and capillary forces, and the difference of velocity between neighboring particles caused by the expanding liquid surface area. This competition selects the cluster length, i.e. , the distance between adjacent rifts. A model based on this competition is consistent with the experimental failure patterns. 
    more » « less